石墨烯由于其优异的导热性和导电性,被认为是一种很有前途的散热和电磁屏蔽材料,近年来引起了广泛的关注。综述了用于热管理的还原氧化石墨烯薄膜、石墨烯薄膜和石墨烯基复合薄膜的研究现状,包括它们的制备和应用。讨论了决定石墨烯薄膜导热性的关键因素,并指出了在未来石墨烯基薄膜的可扩展制造中面临的主要挑战。
随着的推广和普及,散热已经成为电子设备中的一个普遍问题。自20世纪60年代以来,随着摩尔定律的发展,集成芯片行业仍在追求极高的性能,这给热管理带来了巨大的挑战,特别是在便携式电子系统中。传统的散热材料主要依靠金属材料,如氧化铝(~220 W/mk)或铜(~381 W/mk),不仅难以满足局部热点冷却的需求(临界热流密度~1000 W cm−2),而且便携性和灵活性也较差。聚酰亚胺在3000℃下石墨化制备的热解石墨膜,导热系数(k) ~1000 W/mk,应用于手机或笔记本电脑中。此外,石墨薄膜的大规模生产成本相对较高,因为石墨化过程中的产率低,能耗高。因此,开发新的替代品来替代集成器件的高效散热是非常重要的。
在发现石墨烯(一种具有sp2杂化结构的原子层厚碳)之前,这一直是一个问题。如图1所示,机械剥离悬浮石墨烯的固有k为5300 W/mk(远高于块状石墨的2000 W/mk或单壁碳纳米管的3500W/mk,这是Balandin小组首次用拉曼技术测量的。此后,石墨烯由于其极高的k和优异的力学性能,被认为是有前途的替代品之一,并推动了对石墨烯及其衍生物的各种研究,如石墨烯薄膜,纤维,复合材料和层压板用于热管理应用。
本文综述了近年来石墨烯基薄膜及其复合材料在散热方面的研究进展。然后,对石墨烯的官能化、石墨烯片的横向尺寸和取向等影响其散热效率的主要因素进行了总结和讨论。在这篇综述的最后,评论了挑战和发展趋势,为下一代基于石墨烯的二维热管理材料提供指导。
在本节中,介绍了制备的最新技术综述了石墨烯薄膜及其衍生物,包括不同的前驱体及其对改善石墨烯薄膜k的贡献。
为了获得具有完美晶格结构的单层石墨烯,高取向热解石墨膜(HOPG)的机械剥离是最可行的方法之一。这些微尺寸的石墨烯片被广泛用于石墨烯晶格中传热或声子输运的基础研究。另一方面,随着化学气相沉积(CVD)技术的快速发展,高质量的单层或多层石墨烯薄膜可供研究或应用。Gao等人将热CVD法应用于单层石墨烯薄膜的生长。应用于Pt芯片时,热点温度从394 K降至381 K。 超高速生长技术推动了CVD石墨烯的规模化制备。例如,一英寸大小的单晶石墨烯在Cu-Ni合金衬底上快速生长。Xu等人开发了一种供氧的超快速CVD来生长单晶石墨烯。但由于石墨烯从衬底转移而不破坏晶格结构相对困难,因此CVD石墨烯薄膜作为导热材料的应用仍然存在障碍。
虽然单层或多层石墨烯表现出良好的面内κ,但在没有衬底的情况下直接应用在热点上仍然存在障碍。因此,人们在石墨烯或氧化石墨烯片的组装方法上付出了很大的努力,以获得独立的氧化石墨烯薄膜。由于Rouff等通过真空过滤制备出具有优异拉伸强度的氧化石墨烯薄膜,氧化石墨烯在水中具有优异的分散性,因此被广泛应用于制作二维薄膜或者有机溶剂。在过去的十年中,基于氢键相互作用形成一层又一层致密结构的各种组装方法被开发出来,如静电纺丝、湿纺、铸造、喷涂、叶片和棒材涂层。例如,在聚四氟乙烯磁盘中通过温和蒸发工艺制备的氧化石墨烯薄膜,其k为1100 W/mk,具有20 dB的优异EMI屏蔽性能。在图2(a-e)中,Xin等报道了用连续卷对卷方法电喷涂沉积氧化石墨烯薄膜,在2200℃退火后,薄膜的κ达到~1200 W/mk。为减小声子界面散射,采用干泡法制备了厚度仅为0.8 μm的超薄氧化石墨烯薄膜,其κ值为~3200 W/mk
最近,连续缠绕生产氧化石墨烯薄膜,结合叶片涂层,轻度热还原(140°C)和石墨化(2850°C),其k值为1204 W/mk。值得注意的是,如图2g和2h所示,采用自熔方法制备的氧化石墨烯薄膜厚度达到了~200 μm,具有很好的工业生产前景。Liu等人报道了一种快速卷对卷工艺来制造连续氧化石墨烯薄膜。经过强化焦耳加热还原处理后,还原氧化石墨烯膜的k和电导率分别达到1285 W/mk和4200 S/cm。Huang等人提出棒状涂层策略制备氧化石墨烯膜,石墨化处理后的氧化石墨烯膜的κ值为826 W/mk。为了提高导热膜的热流密度,采用自熔合法制备了一种超厚氧化石墨烯薄膜,该薄膜厚度为亚毫米,其热传导率和导电性分别为1224 W/mk和6910 S/cm,在热管理和电磁干扰屏蔽方面具有广阔的应用前景。
如表1所示,大多数氧化石墨烯薄膜的平均k值仅为~1300 W/mk,远低于体石墨的2000 W/mk。由于氧化石墨烯在氧化处理过程中存在固有的结构缺陷。这种非谐波晶格结构可能导致严重的声子散射,从而影响所得氧化石墨烯薄膜的散热性能。因此,为了恢复石墨烯片的结晶度以保证散热,需要对氧化石墨烯薄膜进行高达2800℃以上的碳化和石墨化。
通过机械剥离制备的石墨烯,如球磨、剪切力剥离、(即液相剥离)、超临界流体法和新型分层工程剥离,在减少氧化处理引入的缺陷或杂原子方面具有很大的优势。因此,与氧化石墨烯薄膜相比,石墨烯粉末组装的石墨烯薄膜也表现出了很好的性能。在图3(a-e)中,Teng等人通过球磨法制备了高浓度石墨烯浆料。对GF纸进行过滤达到1529 W/mk的高k值。采用木质素磺酸钠辅助球磨工艺制备了石墨烯纳米片,得到的石墨烯薄膜的k达到1324 W/mk。最近,Wu等人提出了一种可规模化生产的石墨烯层压浆过滤工艺,石墨烯膜的k为975 W/mk。
图3.(a)采用球磨法和真空过滤法制备石墨烯薄膜,(b, c)石墨烯薄膜的表面和截面形貌。(d, e)石墨烯薄膜的导热性和散热性能(Copyright 2017, John Wiley and Sons),(f)石墨烯膜离心浸涂示意图及光学照片,(g-i)所得石墨烯薄膜的SEM图像,(j- 1)石墨烯薄膜的导热性能、导电性和电磁干扰屏蔽性能。
但由于机械剥离石墨烯片的分散性差,限制了石墨烯粉末的应用。虽然表面活性剂的使用可以提高剥离效率,但残余添加剂的存在可能会在炭化处理过程中给石墨烯片引入额外的缺陷,导致k下降。另一方面,由于石墨烯基面之间的Vander Walls相互作用较弱,石墨烯薄膜的力学性能不如氧化石墨烯薄膜。在这方面,如图2(f- 1)所示,一种新的扫描离心铸造方法被用于增强石墨烯片的对准,从而将散热和电磁干扰屏蔽性能分别提高到190 W/mk和93 dB。此外,还开发了一系列改进的剥离方法,在石墨烯片的边缘接枝官能团,如羧基或羟基,以获得更好的力学性能,同时对sp2调和晶格结构的破坏最小。
由于自上而下的制备策略,氧化石墨烯或石墨烯片的横向尺寸相对较小是一个普遍的问题。相邻薄片之间存在大量的边界可能导致严重的声子边界散射,导致κ的下降。因此,开发基于石墨烯的复合薄膜来填补石墨烯片之间的内部空隙或间隙是一个强烈的动机。例如,Kong等人通过热压碳化,将高导电性碳纤维连接氧化石墨烯薄片,其κ值提高至973 W/mk。Hsieh等人开发了石墨烯/碳纳米管复合膜,其面内和面外κ分别达到1 991和76 W/mk。膨胀石墨也被用于与氧化石墨烯结合,以提高导热性和电磁干扰屏蔽性能。最近,如图4(a-f)所示,石墨烯和碳纳米管的协同效应的κ值为1154 W/mk,电磁干扰屏蔽性能为~50 dB。图4(gl)展示了石墨烯在碳纳米管纱线薄膜上的改性喷涂涂层,据报道其κ值为1 056 W/mk。如图4d所示,碳纤维或碳纳米管的存在在石墨烯或氧化石墨烯片之间架起了有效的散热通道,起到了重要作用。
图4.(a)氧化石墨烯/碳纳米管复合膜的棒状涂层制备,(b, c)复合膜的SEM和TEM形貌。(d) CNTs作为连接石墨烯片的热通道示意图,(e, f)复合薄膜的热屏蔽性能和电磁干扰屏蔽性能,(g)在碳纳米管纱线上喷涂氧化石墨烯涂层的示意图,(h, i)氧化石墨烯/碳纳米管复合膜的SEM和TEM图像,(j)还原氧化石墨烯/碳纳米管改善传热性能的示范,(k)不同氧化石墨烯负载下复合膜的导热系数,(l)复合膜与铜片的红外照片对比。
此外,如图5所示,Li等人将PI纸浆作为骨架,再过滤氧化石墨烯溶液,石墨化后制备了k为1428 W/mk的rGO/PI复合膜,使PI变成导电石墨结构。但值得注意的是,石墨烯与这些低维碳材料之间的弱范德华相互作用导致复合薄膜在小半径弯曲下的柔韧性相对较差。
图5.(a)氧化石墨烯溶液在PI纸浆上的铸造过程,(b-d) PI纸浆和石墨化GO/PI复合膜的光学照片和SEM形貌,(e) GO/PI薄膜与铜箔的散热性能比较,(f) g-C3N4连接的氧化石墨烯示意图,(g, h) rGO/C3N4复合膜的表面形貌和截面形貌,(i-k) rGO/ C3N4薄膜的导热系数和在CPU上的散热性能。
另一方面,对氧化石墨烯片进行化学改性,实现共价键连接,也是恢复石墨烯片间边界的有效途径。引入硅烷功能化策略可降低石墨烯薄膜的热阻,其κ值增加56%,达到1642 W/mk。如图5(f-k)所示,Wang等人使用2D gC3N4作为连接子来拼接rGO薄片,其k增强了17.3%。将rGO/g-C3N4复合薄膜涂在CPU芯片上,工作温度在40秒内降低了10℃以上。在这方面,我们的团队采用了所谓的“分子焊接”策略,通过PI、聚苯胺(PANI)、聚乙烯亚胺(PEI)或其他聚合物连接氧化石墨烯薄片。如图6所示,通过对GO的修饰k提高约60%。PI的存在为热传递提供了有效的声子通道,从而提高了导热性能。聚丙烯腈(PAN)也是偶联氧化石墨烯的有效替代品,可提高散热性能。这种修补石墨烯或氧化石墨烯薄膜缺陷的改性策略,为应用剥离的石墨烯或氧化石墨烯粉末进行热管理提供了有效途径。
具有完美晶格结构的石墨烯表现出惊人的热学和电学性能。但实际上,由于石墨烯薄膜的制备和组装过程,石墨烯片存在许多缺陷。如图7所。
星空体育在线直播